
Breaking the 100 bits per second barrier with Matrix
An entirely new transport for Matrix for really terrible networks.

matthew@matrix.org

@matrixdotorg 1

Matrix is an open network for secure,
decentralised real-time communication.

2

Interoperable chat Open comms for VR/ARInteroperable VoIP Real-time IoT data fabric

Mission: to create a global
decentralised encrypted

comms network that provides
an open platform for real-time

communication.

4

Telegram

Slack

Gitter

IRC

XMPP

Discord

5

Telegram

Slack

Gitter

IRC

XMPP

Discord

No single party owns your
conversations.

Conversations are shared
over all participants.

6

Matrix Architecture

Clients

Home
Servers

Identity
Servers

Application
Servers

Matrix Ecosystem

The Matrix Specification (Client/Server API)

client-side
server-side

Other Servers:
Ruma (Rust),
jeon (Java)…

Synapse
(1st gen Matrix

Server)

Matrix Application
Services and

Bridges

Other Clients:

…and many many more

Matrix
iOS

Console

MatrixKit (iOS)

matrix-ios-sdk

Matrix
Web

Console

matrix-
angular-

sdk

matrix-js-sdk

matrix-
android-

sdk

(Java)

matrix-
react-
sdk

Dendrite
(2nd gen
Server)

Other Services:
Bridges, Bots, Integs…

gomuks
(CLI/go)Quaternion

(Qt/C++)

weechat-
matrixnheko-reborn

Seaglass
(macOS)Fractal

(Gtk+/Rust)

matrix-
sdk-

android
(Kotlin)

matrix-
sdk-

android-
rx

“Riot X”

Low Bandwidth Matrix

• Our target: 100bps.
• It takes 2 minutes to send an Ethernet packet (1500 MTU) at

100bps.
• Why would you do this?
• Connectivity can get pretty bad in life or death situations.
• If you are in appalling connectivity (e.g. the bottom of a crevasse)

you want every bit to count.

HTTP/1.1+TLS

• Matrix is intended to be transport agnostic
• We started with HTTPS+JSON for convenience
• Any web developer can trivially send a message:
curl 'https://matrix.org/_matrix/client/r0/rooms/!foo:matrix.org/send/m.room.message/1’

-X PUT --data '{"msgtype":"m.text","body":"test"}'

• Typical HTTP/1.1+TLS/1.2 request to send “test”
• 7,004 bytes (including Eth headers)
• 8 round trips.
• 10 minutes to set up & send a msg at 100bps

• Obviously it could be so much better…

HTTP/2

• So what about HTTP/2?
• Add --http2 to curl…
• Now 6,737 bytes – we saved ~300 bytes :/

HTTP/3

• So what about HTTP/3? (HTTP over QUIC)
• We’re now over UDP + TLS/1.3
• Still have to do a TLS certificate handshake
• => Roundtrips reduced to 6 in total
• => ~6,700 bytes to send the same message.
• QUIC requires bit-stuffing to mitigate amplification attacks
• Once established, 983 bytes to send again
• Not ideal :/

CoAP

• CoAP is Constrained Application Protocol (RFC7252).
• Very very bit-efficient transport for RPC over UDP.
• Designed for Constrained devices and environments (e.g. IOT)
• Maps almost directly to HTTP (but isn’t HTTP).
• Typically expects a request to fit inside a single packet
• 1 roundtrip!
• ~500 bytes! (so only 40s to send a message!)
• Now we’re getting somewhere

CoAP+DTLS

• CoAP’s recommended encryption is DTLS+PSK.
• According to

https://tools.ietf.org/id/draft-mattsson-lwig-security-protocol-
comparison-01.html this can be as low as 15 bytes of TLS
overhead.
• However, very few CoAP stacks support DTLS (especially in Go)
• Also, Private Shared Keys can be a hassle to admin.

https://tools.ietf.org/id/draft-mattsson-lwig-security-protocol-comparison-01.html

CoAP+Noise
• Instead, we hooked up Noise to go-coap (from go-ocf).

• Noise is a set of building blocks for cryptography protocols.

• We chose to use the Noise Pipe pattern (XX and IK handshakes)
• XX handshake lets you mutually authenticate and establish the public key for your peer over 1 roundtrip,

which you can then cache.
• IK handshake lets you reestablish a secure channel with 0RTT (if you already know the public key of

your peer).

• Handshake is 32 bytes per token (roughly), and then 16 bytes auth tag overhead per msg.

XX:

-> e

<- e, ee, s, es

-> s, se + payload

IK:

-> e, es, s, ss + payload

<- e, ee, se + payload

CoAP+CBOR+Noise
• But what about the payload?

• JSON is fairly bulky
• echo ‘{"msgtype":"m.text","body":"test"}’ | wc –c
• 35 bytes

• Switch to CBOR?
• echo '{"msgtype":"m.text","body":"test"}' | perl -MCBOR::XS

-MJSON::XS -pe'$_=encode_cbor(decode_json($_))’ | wc -c
• 26 bytes.

• CBOR is generally about 75% smaller.

CoAP+CBOR+Deflate+Noise
• 75% isn’t good enough.

• First let’s improve the payload itself:
• Map each HTTP URI to a numeric route ID for CoAP
• Reduce the size of IDs (e.g. event IDs, room IDs, CoAP msg/token IDs)

• Manually mapping to shorter IDs gets a bit boring

Þ Run everything through Deflate, with a preshared dictionary.

• Works excellently, but a bit questionable protocolwise.

• ~90 bytes (inc headers) + 16 bytes of crypto overhead.
• 8 seconds to send a message at 100bps :D

coap-proxy architecture

18

Client

CoAP Proxy

Server

CoAP Proxy

Server

CoAP Proxy

Client

CoAP Proxy

JSON

HTTPS

TCP
IP

Ethernet

CBOR

CoAP

FLATE
NOISE

UDP
IP

Ethernet

7kB

50B

16B

8B

20B

14B

108B

è 65x improvement!

Demo!

When can we use it?!
• Need to work a bit more on CoAP retry semantics.

• Need to ensure querystrings are < 255 bytes

• Need to ensure overlapping requests to the same endpoint don’t get

entangled.

• Need to sanitycheck blockwise CoAP + retries. A single missing block

shouldn’t kill the whole response.

• QUIC has loads of work on congestion control; CoAP doesn’t.

• Need to decide what to do about Deflate.

Likely to be used in P2P Matrix experiments in future!

Code will be released on https://gitlab.matrix.org shortly.

https://gitlab.matrix.org/

We need help!!

21

DON’T USE PROPRIETARY
SERVICES FOR YOUR CHAT.

• Run a server, or use a provider like modular.im

• Build bridges and bots to your services!

• Don’t reinvent the wheel, use Matrix!

• Follow @matrixdotorg or

@matrix@mastodon.matrix.org and spread the word!

22

https://modular.im/

Thank you!
@matthew:matrix.org
matthew@matrix.org
https://matrix.org
@matrixdotorg

23

http://matrix.org/

