
Breaking the 100 bits per second barrier with Matrix
An entirely new transport for Matrix for really terrible networks.
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Matrix is an open network for secure, 
decentralised real-time communication.
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Interoperable chat Open comms for VR/ARInteroperable VoIP Real-time IoT data fabric



Mission: to create a global 
decentralised encrypted 

comms network that provides 
an open platform for real-time 

communication.
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No single party owns your 
conversations.

Conversations are shared 
over all participants.
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Low Bandwidth Matrix

• Our target: 100bps.
• It takes 2 minutes to send an Ethernet packet (1500 MTU) at 

100bps.
• Why would you do this?
• Connectivity can get pretty bad in life or death situations.
• If you are in appalling connectivity (e.g. the bottom of a crevasse) 

you want every bit to count.



HTTP/1.1+TLS

• Matrix is intended to be transport agnostic
• We started with HTTPS+JSON for convenience
• Any web developer can trivially send a message:
curl 'https://matrix.org/_matrix/client/r0/rooms/!foo:matrix.org/send/m.room.message/1’

-X PUT --data '{"msgtype":"m.text","body":"test"}'

• Typical HTTP/1.1+TLS/1.2 request to send “test”
• 7,004 bytes (including Eth headers)
• 8 round trips.
• 10 minutes to set up & send a msg at 100bps

• Obviously it could be so much better…



HTTP/2

• So what about HTTP/2?
• Add --http2 to curl…
• Now 6,737 bytes – we saved ~300 bytes :/



HTTP/3

• So what about HTTP/3? (HTTP over QUIC)
• We’re now over UDP + TLS/1.3
• Still have to do a TLS certificate handshake
• => Roundtrips reduced to 6 in total
• => ~6,700 bytes to send the same message.
• QUIC requires bit-stuffing to mitigate amplification attacks
• Once established, 983 bytes to send again
• Not ideal :/



CoAP

• CoAP is Constrained Application Protocol (RFC7252).
• Very very bit-efficient transport for RPC over UDP.
• Designed for Constrained devices and environments (e.g. IOT)
• Maps almost directly to HTTP (but isn’t HTTP).
• Typically expects a request to fit inside a single packet
• 1 roundtrip!
• ~500 bytes!  (so only 40s to send a message!)
• Now we’re getting somewhere



CoAP+DTLS

• CoAP’s recommended encryption is DTLS+PSK.
• According to

https://tools.ietf.org/id/draft-mattsson-lwig-security-protocol-
comparison-01.html this can be as low as 15 bytes of TLS 
overhead.
• However, very few CoAP stacks support DTLS (especially in Go)
• Also, Private Shared Keys can be a hassle to admin.

https://tools.ietf.org/id/draft-mattsson-lwig-security-protocol-comparison-01.html


CoAP+Noise
• Instead, we hooked up Noise to go-coap (from go-ocf).

• Noise is a set of building blocks for cryptography protocols.

• We chose to use the Noise Pipe pattern (XX and IK handshakes)
• XX handshake lets you mutually authenticate and establish the public key for your peer over 1 roundtrip,

which you can then cache.
• IK handshake lets you reestablish a secure channel with 0RTT (if you already know the public key of 

your peer).

• Handshake is 32 bytes per token (roughly), and then 16 bytes auth tag overhead per msg.

XX:

-> e

<- e, ee, s, es

-> s, se + payload

IK:

-> e, es, s, ss + payload

<- e, ee, se + payload



CoAP+CBOR+Noise
• But what about the payload?

• JSON is fairly bulky
• echo ‘{"msgtype":"m.text","body":"test"}’ | wc –c
• 35 bytes

• Switch to CBOR?
• echo '{"msgtype":"m.text","body":"test"}' | perl -MCBOR::XS

-MJSON::XS -pe'$_=encode_cbor(decode_json($_))’ | wc -c
• 26 bytes.

• CBOR is generally about 75% smaller.



CoAP+CBOR+Deflate+Noise
• 75% isn’t good enough.

• First let’s improve the payload itself:
• Map each HTTP URI to a numeric route ID for CoAP
• Reduce the size of IDs (e.g. event IDs, room IDs, CoAP msg/token IDs)

• Manually mapping to shorter IDs gets a bit boring

Þ Run everything through Deflate, with a preshared dictionary.

• Works excellently, but a bit questionable protocolwise.

• ~90 bytes (inc headers) + 16 bytes of crypto overhead.
• 8 seconds to send a message at 100bps :D



coap-proxy architecture
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Demo!



When can we use it?!
• Need to work a bit more on CoAP retry semantics.

• Need to ensure querystrings are < 255 bytes

• Need to ensure overlapping requests to the same endpoint don’t get

entangled.

• Need to sanitycheck blockwise CoAP + retries. A single missing block

shouldn’t kill the whole response.

• QUIC has loads of work on congestion control; CoAP doesn’t.

• Need to decide what to do about Deflate.

Likely to be used in P2P Matrix experiments in future!

Code will be released on https://gitlab.matrix.org shortly. 

https://gitlab.matrix.org/


We need help!!
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DON’T USE PROPRIETARY
SERVICES FOR YOUR CHAT.

• Run a server, or use a provider like modular.im

• Build bridges and bots to your services!

• Don’t reinvent the wheel, use Matrix!

• Follow @matrixdotorg or 

@matrix@mastodon.matrix.org and spread the word!
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https://modular.im/


Thank you!
@matthew:matrix.org
matthew@matrix.org
https://matrix.org
@matrixdotorg
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http://matrix.org/

